Altmetric Score
Dimensions
Citation
The ability to specifically down-regulate gene expression using the RNAi pathway in mammalian cells has tremendous potential in therapy and in basic science. However, delivery systems capable of efficient and biocompatible delivery of siRNA to target cells are not yet satisfactory. Here, we report the synthesis and in vitro characterization of ABC triblock copolymers that self-assemble with siRNA based on electrostatics and with each other by hydrophobic interactions. The ABC triblock copolymer is based on poly(ethylene glycol) (PEG), poly(propylene sulfide) (PPS), and a positively charged peptide (PEG-PPS-peptide). The diblock copolymer PEG(45)-PPS(5,10) was synthesized using anionic polymerization of propylene sulfide upon a PEG macroinitiator, and the peptide domain was coupled to the PPS terminus using a disulfide exchange reaction with an N-terminal cysteine residue on the peptide. The peptides were designed to interact electrostatically with siRNA, selecting the TAT peptide domain of HIV (RKKRRQRRR) and an oligolysine (Lys(9)). The resulting triblock copolymers were able to self-assemble with siRNA as demonstrated by dynamic light scattering and gel electrophoresis. Complex size was found to be dependent on the amount of polymer used (charge ratio) and the length of the hydrophobic PPS block, achieving sizes ranging from 171 nm to 601 nm. Cell internalization and gene expression down-regulation studies showed that the triblock copolymers are able to transport siRNA inside the cell and mediate gene expression down-regulation, with the amount of internalization and gene transfer affected by charge ratio, PPS length, and the presence of serum. The proposed triblock was able to mediate gene expression down-regulation of GAPDH, achieving up to 90.5% +/- 0.02% down-regulation.